Analytical Representation of Ship Waves

(23" Weinblum Memorial Lecture)

NSWCCD-TR-2000/011

Naval Surface Warfare Center

Carderock Division
West Bethesda, MD 20817-5700

NSWCCD-TR-2000/011 July 2000

Hydrodynamics Directorate
Technical Report

Analytical Representation of Ship Waves

(23" Weinblum Memorial Lecture)

by
Francis Noblesse

DTIC QELLETY mogp BOTED ¢

20000913 044

150 9001

Centificate Number: 31425

Approved for public release; distribution is unlimited.




Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden
estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters services, Directorate for
Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,

Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1.

TITLE AND SUBTITLE

2. REPORT DATE
1 July 2000

AGENCY USE ONLY (Leave blank)

3. REPORT TYPE AND DATES COVERED
R&D Final

Analytical Representation of Ship Waves
(23" Weinblum Memorial Lecture)

5. FUNDING NUMBERS
Program Element 0601152N
Work Request WX20295
Task Area ZR-000-01-01

AUTHOR(S)
Francis Noblesse

Work Unit 1-5200-069

11. SUPPLEMENTARY NOTES

ettt e——
12a. DISTRIBUTION/AVAILABILITY STATEMENT

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NAVAL SURFACE WARFARE CENTER
CARDEROCK DIVISION (CODE 5500)
9500 MACARTHUR BOULEVARD

WEST BETHESDA, MD 20817-5700

8. PERFORMING ORGANIZATION
REPORT NUMBER

NSWCCD-TR-2000/011

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

INDEPENDENT LABORATORY INDEPENDENT
RESEARCH (ILIR) PROGRAM

NAVAL SURFACE WARFARE CENTER

CARDEROCK DIVISION (CODE 0112)

9500 MACARTHUR BOULEVARD

WEST BETHESDA, MD 20817-5700

10. SPONSORING/MONITORING AGENCY REPORT
NUMBER

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13.

ABSTRACT (Maximum 200 words)

Four fundamental analytical representations of time-harmonic ship waves, and the particular cases of
steady ship waves and wave diffraction-radiation without forward speed, are summarized. These
analytical representations are (i) a boundary-integral representation, called velocity representation, that
defines a free-surface potential flow in terms of a velocity distribution at a boundary surface, (ii) a practical
Fourier representation of super Green functions associated with a broad class of dispersive waves and
arbitrary singularity distributions, (iii) a simple representation, called Fourier-Kochin wave representation,
of the waves due to an arbitrary boundary velocity distribution, (iv) a corresponding representation of local
flows, called Rankine and Fourier-Kochin representation, based on the velocity representation, the Fourier-
Kochin approach, and a Rankine-Fourier decomposition process. The four analytical representations are
the main results underlying the Fourier-Kochin theory of ship waves. The results are organized in an order
intended to provide a coherent and complete overview of this theory.

Fourier-Kochin theory

|14 SUBJECT TERMS 15. NUMBER OF PAGES
wave diffraction-radiation 48
ship waves
shlp motions 16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION OF
THIS PAGE

UNCLASSIFIED

18, SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

SAR

NSN 7540-01-280-5500

11

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
288-102




CONTENTS

INErOdUCHION ..ottt 1

Two complementary elementary solutions of Laplace’s equation ................................ 2

Free-surface boundary conditions..................c.oc.ooooiiiiiiii e, 3

Dispersion functions and dispersion Curves........................c..cccocooooicoec e 4

Free-surface Green functions ..., 6

Two fundamental boundary-integral representations ........................cocoooeieveieeenn, 8

The classical Green-function method ..., 12
Fourier-Kochin representation of free-surface effects.....................ccocooiiiiioiivee . 13
Wave-spectrum fUnCtioNS.................ooooooiiiiioii oo 15
Green functions and super Green fUnctions ....................c.ocoovioeeiicioioeeeeeeeeeee. 16
Practical representation of generic super Green functions...................c.ccocoovveevveceenn. 17
Fourier-Kochin representation of nearfield waves ...........................cccooevoveceee, 21
Time-harmonic Ship WaVES .................ocooooiiiiiiiieeeeeeeee e, 22
Rankine-Fourier decomposition: physical-space analysis .................c..ococooeevevieni, 25
Rankine-Fourier decomposition: Fourier-space analysis.................c.c.ccococvooivooeeenn.. 27
Rankine and Fourier-Kochin representation of nearfield flows .....................c..occo...... 29
Iterative solution procedures and related approximations ...................ccococovvvveereeerenn.. 31
CONCIUSION. ..ottt 32
RELETENCES ...t e, 35
FIUIES ...ttt 37
APPENAIX 1 ..ot 38
APPENAIX 2 ... 38
APPENAIX 3 oo 38

1




ADMINISTRATIVE INFORMATION

This study was performed with support from the Independent Laboratory Independent Research
(ILIR) Program at the Carderock Division, Naval Surface Warfare Center, West Bethesda, MD.
Program Element 0601152N; Work Request WX20295; Task Area ZR-000-01-01; Work Unit 1-
5200-069.

ACKNOWLEDGMENTS

This summary of the Fourier-Kochin theory would be incomplete without the acknowledgment
of my debt to Dr. Chi Yang (George Mason University) and Dr. Xiao-Bo Chen (Bureau Veritas)
for their work related to the Fourier representation of generic super Green functions. I am also
much indebted to Dr. Dane Hendrix (David Taylor Model Basin), Dr. Chi Yang and Prof.
Rainald Lohner (George Mason University) for their critical work on practical applications of the
theory and to my wife Annie Tabarie for numerous “Fourier-Kochin week-ends” over the past
decade. Finally the support of the Independent Laboratory Independent Research (ILIR)
research program at the David Taylor Model Basin has been of utmost importance and is deeply
appreciated.



Introduction

This study mostly considers three basic classes of free-surface flows related to interactions of
water waves with floating bodies like ships and offshore structures : (i) time-harmonic flow associ-
ated with diffraction-radiation of regular waves by a floating body without forward speed, e.g. an
offshore structure, (ii) steady flow due to a ship advancing in calm water, (iii) time-harmonic flow
due to a ship advancing in regular waves, i.e. wave diffraction-radiation with forward speed. The

body of water is assumed to be of infinite depth and lateral extent.

The classical potential-flow theoretical framework is adopted. This framework correctly repre-
sents the aspects of ship wavemaking and wave diffraction-radiation by ships and offshore struc-
tures that are of primary practical significance (notably forces, pressure distributions, and wave
patterns) . Furthermore, potent.ial-ﬂow theory is the ohly framework that provides practical means
of analyzing steady ship waves and wave diffraction-radiation in various wave environments for

routine applications, and for hull-form optimization (ultimately required for superior designs) .

Mathematics has been used extensively to analyze free-surface flows (and more generally fluid
flows) in various special cases, including special geometries (e.g. 2D flows, and 3D flows about simple
bodies like spheres and spheroids) and limiting cases associated with a perturbation analysis (e.g.
thin-ship and slender-body theories, and theories based on low or high ship-speed or wave-frequency
approximations) . This traditional role of mathematics, which may be named ”mathematics for
special cases”, has provided a wealth of useful results. Another important role of mathematics,
which may be named ”mathematics for the computer age”, consists in developing mathematical
formulations that make it possible to perform robust, accurate, and efficient numerical calculations,
without restriction with regard to hull form, ship speed, and wave frequency. Mathematics is used

here for the latter purpose.

Specifically, four fundamental analytical representations of the three classes of free-surface flows
under consideration are summarized. These analytical representations are the main results that
underly the Fourier-Kochin theory of ship waves. The four analytical representations are presented

in an order and a manner intended to provide a coherent and complete overview of this theory.



Two complementary elementary solutions of Laplace’s equation

An important fundamental solution of the Laplace equation is the elementary wave function

exp[\/a?+p2¢ —i(a &+ Bn)] (la)

Here, o and B are real. Another important class of fundamental solutions of Laplace’s equation is
the elementary Rankine singularity 1/r and the related Rankine sources 1/’ and 1/7" with r, 7/,

r” given by

V (€-2)2+ (n—y)?+ ((—2)*
r' =/ (E=2)7+ (1—y)2+ ((+2)? (1b)
V (E—2)?+ (n—y)?+ ((+2-C%)?

r =

T'” _
Here, C? is a positive real constant.
b

The elementary wave (1a) and the elementary Rankine singularity 1/r are related via the Fourier
transformation (see Appendix 1)

Lo (%5 [Tga & eric—2
2T /_oodﬁ/—oga k (20)

r

with
k=+/a2+32 £ = e tla(€-2)+B(n-y)] (2b)

Expression (2a) shows that, for { + 2z < 0, the related Rankine sources 1/7' and 1/r" can similarly

be expressed as
ek [l g e
The Fourier relations (2) indicate that free-surface flows can in principle be represented using ex-
clusively Rankine singularities or elementary waves. However, thesé two ”extreme” approaches are
not the most appropriate because Rankine singularities and elementary waves are complementary
elementary solutions of the Laplace equation that are ideally suited for representing nonoscillatory

local flow disturbances and waves, respectively.



Free-surface boundary conditions

Consider a ship advancing in waves along a straight path, with constant speed ¢ . The X axis
is chosen along the path of the ship, and points toward the ship bow. Thus, the ship advances in
the direction of the positive X axis. The Z axis is vertical and points upward, and the mean free
surface is taken as the plane Z=0. The flow is observed from a Cartesian system of coordinates
moving with speed U along the X axis, and is expressed as the sum of a steady-flow component,
which represents the flow due to the ship advancing in calm water, and an unsteady-flow component
associated with the ambient waves, the waves diffracted by the ship, and the radiated waves due

to the motions of the ship about a mean position.

Within the framework of a linear potential-flow analysis, the velocity potential ® associated

with the unsteady flow due to the ship satisfies the free-surface boundary condition
g<I’z+(aT—uax)2¢'=0 at Z=0

where T stands for time and g is the gravitational acceleration. A frequency-domain analysis is
considered. Thus, the time-harmonic flow due to a ship advancing through an elementary wave is
now examined. The velocity potential of a linear time-harmonic flow can be defined as the limit,

when the growth parameter u4 — +0, of the flow given by the potential
Re &(X) exp(pT/2 —iwT)

where Re stands for the real part and w is the frequency of the waves encountered by the advancing
ship. This expression for the potential is associated with a flow that may be imagined to start at
the time T' = —oo from a state of rest (since u > 0), corresponding to the initial conditions ® = 0

and ®7 = 0. The free-surface boundary condition becomes
g8z — (w+ip/2-iUdx)2®=0

The time-harmonic flow due to the ship can be formulated in nondimensional form in terms of the
water density, a reference length L and a reference velocity U . E.g., L and U may respectively be
taken as the length and the speed U of the ship. The free-surface condition associated with the
nondimensional coordinates £ = X /L and potential ¢ = ®/(UL) is

dc—(f+ie/2—iF &) ¢p=0

with

f=w\Llg e=p\Llg F=u//g
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For 0 < e « 1, the free-surface condition becomes
dc—(f—iFO)¢—ic(f—iFd)p=0

Thus, the linearized free-surface boundary condition associated with diffraction-radiation of

time-harmonic waves with forward speed is

bc— fPo+1i2r ¢ + Floee — e (ifé+ Foe ) = p (3a)

where 7 = fF' is the Brard number, and p stands for a nonhomogeneous forcing term. E.g., p may
account for a pressure distribution at the free surface. The linear free-surface condition associated

with steady ship waves can similarly be shown to be

¢c+ F2pee —eFge =p (3b)

Here, Vi stands for the disturbance velocity due to the ship. Finally, the free-surface condition for

linear time-harmonic flows without forward speed is
¢~ f*¢—icfop=p (3¢c)

The free-surface conditions (3b) and (3c) evidently correspond to the special cases f=0and F=0

of the ship-motion condition (3a).

Dispersion functions and dispersion curves

The elementary wave solution (1a) of the Laplace equation satisfies the homogeneous free-surface
boundary conditions (3) if the Fourier variables o and § satisfy the relation D, = 0, where the

function D, = 0 is defined as

with D and D’ given by
(f—Fa)? —k f-Fa FF>0
D={ F2?2-k D'={ —Fa ¢ i f=0 (4b)
2k f F=0

In expressions (4b) for the function D, called dispersion function, k= v/a?+3? is the wavenum-
ber. Farfield waves corresponding to the free-surface boundary conditions (3) are given by one-

dimensional Fourier superpositions of elementary waves (1a) since the Fourier variables o and 3



are related by the dispersion relation D=0. In fact, the dispersion relation D=0 typically defines
several curves (although a single curve may be defined in some simple cases) in the Fourier plane
(o, B) . These curves, called dispersion curves, have an important role in the Fourier representation
of farfield and nearfield waves. The dispersion curves associated with the dispersion relations (4b)

are now considered.

For time-harmonic flows without forward speed, the dispersion relation D=0 defines the single

closed dispersion curve

k= f? (5a)

which evidently is a circle centered at the origin k£ = 0 of the Fourier plane. For steady flows, the

dispersion relation k = F2a? defines two open dispersion curves given by
B==|a|VFia?-1 (5b)

with F2|a| > 1. These dispersion curves are symmetric about both =0 and a =0. The ship-

motion dispersion relation D=0 corresponding to the case 7 = fF > 0 yields
B =+\/(f-Fa)i—a? (5c)
The dispersion curves defined by (5c) are symmetric with respect to 8= 0. The ship-motion
dispersion relation (5c) defines two or three dispersion curves if 7 is larger or smaller than 1/4.

If 7 <1/4, the three dispersion curves intersect the axis 8= 0 at four values of a, which are

denoted of and oF and are given by

+of = f2(/1/a£7 —1/2)%/ 12

(6)
tof = (\/I/4£T +1/2)%/F?
The three dispersion curves are found in the regions
a<a; a<a<eof aof<a (7a)

If r=1/4, (6) yield
a;,=a; =—f/F=—-wL/U

and the dispersion curves in the regions o < a; and o <a< o] are connected. If 7>1/4, the

roots a, and «; are complex and we only have two dispersion curves, located in the regions

a< a;-*' aj La (7b)



The inner roots a;’-b and the outer roots o satisfy the inequalities

a;<—f/F<a;<0<af<f/F<of ®)
aof <|aj|<|aj|<af
The dispersion curves defined by (5), (6) and (7) are depicted for 7 = 0.2,0.25,0.3 in Fig. 1, where

the Fourier plane is scaled with respect to f/F'.
In the limit 7=0, (6) yield o =+f? and of =+1/F?. More generally, we have
of w2 afx~t1/F? forrxl1

Thus, the dispersion curves in the outer regions a < a; and o} < a correspond to values of
the wavenumber k that are greater than 1/F? (approximately), whereas we have k ~ f? for the
dispersion curve in the inner region o; <a < a;L . The ratio of the wavenumbers k; and k, associated
with the inner and outer dispersion curves, given by k;/k, ~ 72, is very small if T is small, say if
7<0.2. Thus, scaling of the Fourier coordinates a and 3 with respect to f2 and 1/F? is proper in
this regime. The upper and lower parts of Fig. 2 respectively depict the inner and outer dispersion
curves for several values of 7 in the frequency-scaled and speed-scaled Fourier planes (o, 3)/f? and
F%(a, ). Finally, (6) yield

of ~ f/[F~af asT—00

Thus, scaling of the Fourier coordinates with respect to f/F is proper for large values of 7.

Free-surface Green functions

The Green function G(E ,¥) associated with the ship-motion free-surface boundary condition

(3a) satisfies the free-surface boundary condition
Ge — f2G 4121 Ge + F2Gee — e (if G+ FG¢) = 0 (9)

at ( =0. G(g, Z') is the velocity potential of the flow created at the field point £= (€,n,(<0)
by a pulsating source located at the singular point # = (z,y,2 <0). Green functions associated

with a boundary condition like (9), which holds at the plane { = 0, can be expressed as
G(€7f) = Gs(f—m,ﬂ_y,c—z) +GF(§"$,77—?/’C+2) (10&)

where G° corresponds to a simple Rankine source and G accounts for free-surface effects. The

Rankine component G is defined by
4GS = —1/r (10b)



with 7 given by (1b). The free-surface component G in expression (10a) corresponding to the

free-surface condition (9) is given by (see Appendix 2)
47 G¥ = Jim —/ dﬂ/ da ek(C+a) g (11a)

Here, k and £ are given by (2b), D, is the dispersion function defined by (4), and the amplitude
function AF is given by

T=[(f-Fa)*+k]/ (2k) (11b)
The free-surface component G¥ in (10a) is usually expressed in the alternative forms

-1/r"+H
4nGF = / (12)
1/r'+H
with 7’ given by (1b). The alternative decompositions 47 G¥ = —1/r'+ H and 4n GF = 1/r'+ H

are shown further on to be appropriate for F=0 and F >0, respectively. Thus, (10) and (12) yield
~1/r=1/r"+H F=0

ma={ Y it (13a)
-l/r+1/rf'+H|  |F>0

Expressions (2c) and (11) show that the free-surface components H and H in (13a) are given by

the Fourier superposition of elementary waves

F= lim —/ dﬂ/ da & e’c<<+2>£ (13b)
e—+0 7
with D, given by (4) and
M 2/ F=0 |
F= a=ITEL (13¢)
H 1 F>0

In the special case of wave diffraction-radiation without forward speed, (13c) yields A=1 if k= f2,

i.e. at the dispersion curve defined by the dispersion relation D=0.



Two fundamental boundary-integral representations

Consider the basic problem of determining the flow, inside a free-surface potential-flow region,
that corresponds to a given flow at a surface ¥ bounding the potential-flow region. Here, the
boundary surface ¥ stands for £ = U W where the surface ¥H is an arbitrary control surface
outside the viscous boundary layer that surrounds the hull of a ship (or other body, e.g. an offshore
structure) at or below the free surface, and the surface W represents the outer edge of the viscous
wake trailing the ship or a control surface outside the viscous wake. If viscous effects are ignored,
$H may be taken as the wetted surface of the ship hull. For a ship equipped with lifting surfaces,
e.g. a sailboat, ©% includes the two sides of every vortex sheet behind the ship. For a multihull
ship, the hull+wake surface ¥ consists of several component surfaces, which correspond to the

separate hull components of the ship and their wakes.

¥ may intersect the mean free-surface plane { = 0 or may be a closed surface entirely located
below the plane ¢ = 0. In the former case, ¥ is bounded upward by its intersection curve I' with
the plane ¢ = 0. The unit vector 7 = (n%,n¥% n?) normal to the boundary surface ¥ points outside
¥, i.e. inside the flow domain. The unit vector = (¢%,#¥,0) tangent to the boundary curve I' is
oriented clockwise (looking down). The unit vector normal to I' in the plane ¢ = 0 points inside

the flow domain, like i, and is given by 7 = (—t¥,t%,0).

A classical fundamental result of potential-flow theory is that the velocity potential ¢ within
a potential-flow region bounded by a surface ¥ is explicitly defined in terms of the values of the
potential ¢ and its normal derivative 8¢/0n = Vi - @ = @ - 7 at the boundary surface ¥. This
fundamental boundary-integral representation — called potential representation because it defines
the potential ¢ — and related boundary-integral representations that define ¢ within a potential-
flow region in terms of boundary distributions of sources or normal dipoles form the basis of
numerous panel methods reported in the ship and offshore-structure hydrodynamics literature to

compute linear free-surface potential flows using free-surface Green functions.

Another fundamental boundary-integral representation — given in Noblesse (2000) and called
velocity representation — explicitly defines the velocity # within a potential-flow region in terms
of the velocity @ at the boundary surface ¥. Thus, the velocity representation does not involve
the potential ¢. This property is a major difference between the velocity representation and the
potential representation. The velocity representation can therefore be used to couple a viscous

flow, for which a velocity potential cannot be defined, and a potential flow in a direct manner, i.e.



without having to solve an integral equation as is necessary if the potential representation is used.
Specifically, the potential representation requires a two-step procedure : an integral equation must
first be solved to determine ¢ at the boundary surface from the known boundary value of 8¢/dn,
and ¢ and V¢ can subsequently be determined at interior points from the boundary values of ¢

and O¢/0n .

Another important difference between the potential representation and thé velocity representa-
tion is that the velocity representation defines # in terms of first derivatives of the Green function
G, whereas # can only be obtained from the potential representation using either analytical differ-
entiation of the potential representation, which involves second-order derivatives of G, or numerical

differentiation of ¢.

The velocity representation and the classical potential representation are given in Noblesse
(2000) for generic free-surface potential flows and for four basic classes of flows corresponding to (i)
an infinitely rigid or soft free-surface plane, (ii) diffraction-radiation of time-harmonic water waves
without forward speed, (iii) steady ship waves, and (iv) time-harmonic ship waves (diffraction-
radiation with forward speed). The classical potential representation and the velocity representation
are given here for diffraction-radiation of time-harmonic water waves without forward speed, steady

ship waves, and time-harmonic ship waves. The potential ¢ and the velocity # can be expressed as

6= R+ ¢F + 9" — 97

ifF=0 (14a)
@ =af+al+a" +af —ar
_ 4R __ 4R +H | H P
¢=¢" - +¢" +ép — ¢ it =0 (14b)
@ =uf-al+af+aff —ar
R R H H )
+ ¢ + o +
p=@" -9l 4o +oE + 67— ¢ if fF >0 (14c)

i=uf-al+af+ald +al+all uy —uP

The components ¢f, #F and ¢f, @f in the potential and velocity representations (14) stem
from the Rankine components in the Rankine-Fourier decompositions (13a) of the Green functions
associated with the free-surface boundary conditions (3). The Rankine components in (14) are

given by surface distributions of elementary Rankine singularities 1/r and 1/7’. Specifically, the



Rankine component ¢f, @ % is given by

)

(9" (—(@- )R+ ¢ (n°Re + ¥Ry + n°Ry)
R ~(Z-7)R; — (UXT)* R Ux i)Y R,

N B e 50
o [ T2 | (@ 7t) Ry — (@x70)° R, + (@x70)* Ry
wh | |—(@-7) R; — (Gx @)Y Ry + (@x70)" Ry |

with R = —1/r. The Rankine component ¢®, @ is given by

(4R ] (—(@-7) R* + ¢ (n*R% +nYR: +n°RY) |
ull —(@-A)R: — R} + (@x )V R}

4 >=/dAJ (@) Ry = (@x) (@) k; \ (15b)
RS | —(@ @) Ry — (@x7)® RE + (x7)* Ry
| —wh | (@) R, — (@xA)Y R + (ExA) R} |

with B* = —1/r'.

The components ¢’¢, @ and ¢¥, @ in the potential and velocity representations (14) are
defined in terms of the functions H and H , which account for free-surface effects. The free-surface

component ¢, #¥ — where F stands for either H or H — is given by

=a (—(@-7) F + ¢ (n®Fy +nVF, + n*F,)
F —(T -7 Fy — (xT7)? Zx i)Y F,
. u =/dA< (@-7) (x7)? Fy + (@x ) | (16)
BT —(@ @) Fy - (@xA)F, + (@xA) Fy
\—w}-l (= (8- 7)) F, — (xA)Y Fp + (Gx7)° Fy )

Expressions (15) and (16) involve source and vortex distributions over the boundary surface ¥
with respective strengths given by the normal component i - 7 and the tangential component @x 7

of the velocity at ¥. The velocity components in (15) and (16) only involve the first derivatives
VR, VR*, VF.

The component QI}H in (14a), the component ¢¥ | ## in (14b) and (14c), and the components
o 1.'[ and 7 § in (14c) are given by distributions over the boundary curve I'. Specifically, the

component ! 7 in (14a) is given by

u}H tYH,
4 { o} =/d£ 6! _m, (17a)
r
wft tYH, — t°H,

10



The component ¢ , @f in (14b) and (14c) is given by

3 (

(gl (@ 7) (¥)2H - (@-1) “tH + $tVH, |
H == 2 AT
U w-U)(tY)*Hy — (4 -t)t*tYH,
4r 4 F>=F2/d/:<( ) ()" He = #) v (17b)
vl r (@-7)(t¥)2Hy — (4 -T) (*tVH,+ H,,)
—wH | ((@-7)(®¥)°H, — (@) (t*YH, - HZ,) |
The components ¢, #H and @ J{{ in (14c) are given by
r¢TH ) ( qStyH )
ull 0
and T d=iorfdc! % (17¢)
vl r i-tH
\w"H / \ 'II'.-E H; /
u}H tYH
ar off =12 dL o] —#H (17d)
T
wf tYHZ—t"H}

The function H? in (17b)-(17d) is defined as

HZ(e—a:,n—y,<+z>=/_;dt H(E—2,m—y,C+1)

The function HZ, in (17b) is comparable to the first derivative VH of H (the functions HZ, and
VH have similar behaviors in the near field and the far field). The functions HZ and HZ in (17c)

and (17d) likewise are comparable to the function H .

Finally, the component ¢?, 4P associated with the nonhomogeneous term p in the free-surface

conditions (3) is given by

( ) 4 Y\ { h'
oP H H
uP -H, H,
47 >=/ dApd ° =/ dA p ¢ (18)
vP ZF —H, £F H,
\ wp 7 \ Hz / \ HC)

where ©F stands for the mean free surface.

The velocity components @ and @ defined by (17b) and (17¢) involve the normal component
-7 and/or the tangential component @ -7 of the velocity @ at the boundary curve T'. Expressions

(17a) and (17d) for the components ﬂ‘}{ and ¥ ;{ involve the potential ¢, which is defined in terms

11



of the velocity @ by the free-surface conditions (3c) and (3a). In the special cases f=0 and F'=0,
(14¢) can be verified to be identical to (14b) and (14a) as expected.

The boundary-integral representations (14)-(18) are obtained in Noblesse (2000) using elemen-
tary identities in vector calculus. Specifically, the divergence theorem is used in the 3D flow region
bounded by the closed surface £ U X® U EF. Here, £ represents a large outer boundary surface
that surrounds the previously-defined hull+wake inner boundary surface ¥, and £ stands for the
portion of the mean free-surface plane z =0 that is bounded by the intersection curves I' and I'*®
between the plane 2=0 and the inner and outer boundary surfaces ¥ and £°°. Stokes’ theorem is
also used in the 2D free-surface region £ bounded by I' UT*® for the purpose of expressing the
contribution of the free surface LF in terms of a line integral around the inner boundary curve
['. Thus, the line integrals (17) and the corresponding components in (14) are associated with the
contribution of the mean free-surface plane TF outside the boundary surface ¥. The flow repre-
sentations (14)-(18), given here for deep water, can be extended to uniform finite water depth, and
indeed can be extended to a broader class of problems involving dispersive waves that propagate

in the presence of a planar boundary.

The classical Green-function method

The potential and velocity representations (14)-(18) provide a mathematical basis for computing
steady ship waves and wave diffraction-radiation by offshore structures and ships using the free-
surface Green functions (13) . Free-surface effects in the boundary-integral representations (14)-(18)
. and the corresponding free-surface Green functions are represented by the components ‘H and H

given by the double Fourier integral (13b).

The special case F'=0 is sufficiently simple that the double Fourier integral (13b) can be easily
evaluated. Specifically, the function H is expressed in Noblesse (1982) as

H=W+L (19a)

where W and L respectively represent a system of circular waves and a local flow disturbance. The

wave component W is given by the remarkably simple expression

W = =27 f* [ Eo(f*h) + i Jo(f?h) ] exp[ f3(¢ +2)] (19b)

obtained in Noblesse (1982) . Here, h = /(£ — 2)?+ (n — y)?, Jo is the usual Bessel function and
E, is the Weber function defined in chapter 12 of Abramowitz & Stegun (1965). The functions Ey
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and Jy are infinitely differentiable and can be evaluated quite efficiently. The local flow component
L in (19a) can be evaluated in a highly efficient manner using a simple analytical approximation
based on the nearfield and farfield analytical approximations given in Noblesse (1982), or more

accurately using table interpolation as in Ponizy et al. (1994).

Simple analytical expressions like (19b) are not available if F'>0, i.e. for the free-surface Green
functions associated with steady and time-harmonic ship waves, because forward-speed effects intro-
duce considerable mathematical difficulties. More precisely, the classical Green-function approach
requires practical methods for performing two necessary basic tasks: (i) evaluation of the free-
surface component H in (13a) and its gradient VH , i.e. evaluation of the double Fourier integral
(13b), and (ii) integration of H and VH over a hull panel and a waterline segment. Both of these
two basic tasks are difficult because the functions H and VH are singular and highly oscillatory in
the limit 7 — 0. Although the evaluation and the subsequent hull-panel integration of H and VH
have been considered in numerous studies in the ship-hydrodynamics literature, no simple practi-
cal method of performing these two basic tasks appears to be available yet. Indeed, the integral
representations of the Green functions associated with the free-surface boundary conditions for
steady and time-harmonic ship waves given, for instance, in Noblesse (1981) and Chen (1999) are
relatively complicated and ill-suited for efficient flow calculations. Free-surface effects associated
with the Fourier component H defined by the double Fourier integral (13b) can be analyzed more
simply and effectively using the Fourier-Kochin approach expounded in Noblesse and Yang (1995)

and Noblesse (2000) . This approach is summarized below.

Fourier-Kochin representation of free-surface effects

The order in which the tasks of evaluating the functions H and VH (a Fourier integration) and of
integrating H and VH over hull panels and waterline segments (a space integration) are performed
is reversed in the Fourier-Kochin approach. Specifically, expression (13b) for the free-surface com-
ponent H is substituted into (16)-(18), and the integrations with respect to the space variables
(z,y,2) and the Fourier variables (a, 3) are permuted. Thus, space integration is performed first,

and Fourier integration is performed subsequently in the Fourier-Kochin approach.

An evident advantage of the Fourier-Kochin approach is that the space integration, which is very
complex within the classical Green-function method (because the functions H and VH are singular

and highly oscillatory as already noted), is a trivial task within the Fourier-Kochin method. Indeed,

13




the Fourier-Kochin space integration consists in evaluating spectrum functions, defined below by
(22), given by distributions of elementary waves over the surface ZUT'UX. The Fourier integration,
on the other hand, is simpler in an important respect but more complicated in another respect,
within the Fourier-Kochin approach than the classical Green-function method, as is explained

further on.

The Fourier components in the boundary-integral representations (14) are now defined in terms
of Fourier-Kochin distributions of elementary waves. The Fourier components ¢’¢, #7, ﬁ}{, ¢P, uP

in the representation (14a) of time-harmonic flows without forward speed can be expressed as

,¢H_¢p ) ( 1 3
uH 4 ult —uP 1 o o |—ia 2 0%
4m 4 !  — Jim —/dﬂ/dm [ gw /€7 (202)
v”-i—v;’f—v” e=t0 T /o /-oo | i3 k De
ka+w}"_wP‘ \ k )

Here, D, = f2—k +if e in accordance with (4), £* is given by
£* = ek¢—i(at+pn)

and the function SV is the wave-spectrum function defined in the next section. If F > 0, the

Fourier components in (14b) and (14c) can be expressed as

¢+ oF + ¢f — g7
uH +ufl +ulf —uP % [P & &
4r | P  — fim l/dﬂ/dasg— (20b)
o ol 4ol 4ol —pp | ¥ T oo D
\wH+wfp{+w§{+wf—pr
where D, is given by (4), and § is defined as
( 1 3\ ( S*¢ )
. |-ia —-iBSt/k
5= ;SW-—Q< bS] > (20c)
—iB kliast/k
k 0
\ / \ /

Here, D = (f—Fa)?—k and the wave-spectrum function S% is given in the next section.

The Fourier-Kochin representation of free-surface effects given by (20) and expressions (21) and
(22) for the wave-spectrum function S¥ is obtained in Noblesse (2000) by substituting (13b) into

(16)-(18), exchanging the order in which the integrations with respect to the Fourier variables
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(o, B) and the space variables (z,y, z) are performed, and performing several mathematical trans-

formations of the resulting spectrum functions.

Wave-spectrum functions

The wave-spectrum function S¥ in (20a) and (20c) is defined in Noblesse (2000) as

S+S*¢ F=0
SV = S+ F2SF - 8P if{ f=0 (21)
S+ L 8¢+ F25F 2 B gt FF>0

where the five spectrum functions S, A , St, SF, SP are given by

S:/dA[ﬁ-ﬁ+i%(ﬁxr‘i)y—i§(ﬂxﬁ)x]ekzc€o (22a)
z
¢ id(ati— )k
st =[dc a3 £ (22b)
r
SF (t*tV+aB/k2) @ -t — (V)2 a7
§P= / dAp & (22¢)
»F
with & = et(az+hy) (22d)

The spectrum function S, the spectrum functions Sf, St, SF, and the spectrum function SP are
respectively given by distributions of elementary waves over the boundary surface ¥, the boundary
curve I', and the mean free surface ©F. The spectrum functions S, St, ST are defined in terms of
the normal components % - 77, i - 7 and the tangential components % x 7, @ -  of the velocity @ at
the boundary surface ¥ and the boundary curve I'. The spectrum function S? is defined in terms

of the potential ¢.

In the special case f= 0, i.e. for steady flow, the spectrum function S% is defined by (21) in
terms of the spectrum functions S and S¥, which do not involve the potential ¢ and are defined
directly in terms of the velocity @. If f >0, (21) shows that S¥ involves the spectrum function
52 defined in terms of the potential ¢, although the free-surface boundary conditions (3) can be

used to express ¢ in terms of .
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Green functions and super Green functions

Expressions (21) and (22) show that the spectrum functions S¥ and S in (20) are given by
distributions of elementary waves over the surface ¥ UT U XF. This surface can be divided into
a set of patches associated with reference points (zp,yp,2p < 0) located near the centroids of the

patches. The spectrum functions S¥ and S in (20) are then of the form

p=N
Z Sy ekztilazp+Byp)

p=1
where summation is performed over all the N patches that represent the surface ¥ UT U £¥, and
Sp is a slowly-varying function of @ and . Expressions (20a) and (20b) therefore involve double

Fourier integrals of the type

lim /Zogfffa‘_‘12ek(<+2p>—i[a(s—xp)+ﬁ(n—yp)1
o0 o] De

e—+0 /.
where A, is not a rapidly oscillatory function of o and 8. This Fourier integral is similar to
the Fourier integral (11a) that defines the free-surface component GF in the ship-motion Green

function. Indeed, (11a) and (2b) show that GF is defined in terms of the Fourier integral

F
lim /Zog/ffaA_ek(<+z)—i[a(g_z)+ﬁ<n—y)1
gl Bl o)

e—+0/_

Expression (4a) shows that the foregoing Fourier integrals are of the form

i(Xa+Yp)
= lim /dﬂ/da et (23)

with A = A,e*(¢+2) or A = AFek(¢+2) A function G associated with a distribution of singu-

larities is called a super Green function because of its similarities and differences with usual Green

functions, which correspond to a point source.

The amplitude function AF corresponding to a point source is simpler than the amplitude func-
tion A, associated with a Fourier-Kochin distribution of singularities over a patch. In fact, (13c)
shows that the amplitude function corresponding to the Rankine-Fourier decompositions (13a) of
the Green functions associated with the free-surface conditions (3) is equal to 1 if F > 0 or f¥k
if F = 0. Thus, the Fourier integral (23) is, in this respect, more complicated for a distribution
of singularities than for a point source, i.e. for the Fourier-Kochin approach than for the classical

Green-function method.

The amplitude function A in (23) vanishes exponentially in the limit £ — oo if ( + 2, < 0 or

¢ + 2z < 0. However, the amplitude functions corresponding to a point source and a distribution
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of sources differ in an important respect in the limiting case ¢ + 2p =0o0r {( + 2z = 0. Specifically,
the amplitude function A corresponding to a distribution of singularities over the free-surface plane
z = 0 vanishes as k — oo in all cases (i.e. even if { = 0), whereas A = 1 for a point source
if ¥ > 0and (+2=0. This difference between the Fourier integrals associated with a point
source and a distribution of sources corresponds to the fact that the component that accounts for
free-surface effects is singular for a point source in the limit ¢ +2z — 0 but is finite for a distribution
of singularities. Thus, the Fourier integral (23) is in this respect simplef for a distribution of

singularities than for a point source.

A reliable and practical method for evaluating super Green functions of the type defined by (23)
evidently is a critiéal requirement of the Fourier-Kochin representation of free-surface effects. This
fundamental issue has been considered for a generic dispersion function D + ieD’ and a generic
amplitude function A, i.e. for a broad class of dispersive waves and arbitrary distributions of sin-
gularities, in several studies. The most important result of these studies of generic super Green
functions — obtained by the author in cooperation with Dr. Chi Yang and first given in Noblesse
and Chen (1995) — is a formal decomposition of the generic super Green function (23) into wave
and local components, and a remarkably simple Fourier representation of the wave component.
Alternative Fourier representations of the local component in this wave-+local decomposition are
given in Noblesse and Yang (1996), Noblesse and Chen (1997), and Noblesse et al. (1999). The
most practical of these alternative representations is that given in Noblesse and Chen (1997) . This

study and Noblesse et al. (1999) are summarized below.

Practical representation of generic super Green functions

The double Fourier integral (23) has been considered in numerous studies of free-surface Green
functions. These studies rely on integration contours in the complex Fourier plane a = o, +i ; , or
alternatively in the complex Fourier planes 8 = 8, +i0; or k = k, + i k;, in the manner explained
in Noblesse (1981). A different approach is used here and in the previously-listed studies of generic
super Green functions : the Fourier representation (23) is analyzed directly, i.e. without introducing

a contour of integration, in the real Fourier space (o, 3).

The double Fourier integral (23) can be expressed in the basic form

G=G2+G1 (24a)
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Here, G, is the double Fourier integral
o poo .
g2=/dﬁ/<zéx%e"<xo‘+yﬂ) (24b)
—o0d—

obtained by formally setting € = 0 in (23). Noblesse et al. (1999) show that G; = G — Go can be
expressed in terms of single Fourier integrals along the dispersion curve(s) defined by the dispersion

relation D(a,3) = 0:

__ sign(D e—i(Xa+Yp)
zwz /d ||VDH (24c¢)

|VD|| = \/D?ITD[% where D, and Dpg are the derivatives of the dispersion function D with respect
to the Fourier variables a and (3, and ds stands for the differential element of arc length along a
dispersion curve.

A fundamental result of the theory of Fourier transforms, given in Lighthill (1970), is that the
behavior of a function f(z) in the farfield £ — oo is determined by the dominant singularities of
its Fourier transform. Thus, the dominant farfield features of the function G, defined by (24b),
i.e. the farfield waves contained in G, stem from the dispersion curves defined by the dispersion

relation D = 0. Specifically, Noblesse et al. (1999) yield
__ erf(Y)) 4 ~i(Xa+vp)
Gy ~ Gy = ZWZ / do ||VD|| (25a)

in the farfield limit X2+ Y2 — oco. Here, erf is the usual error function and 1 is defined below.

The basic decomposition (24a) and the farfield approximation (25a) yield
G~GV=61+6y (25b)

as X2+ Y?— co. Expressions (24c) and (25a) yield

_ sign(D') +erf(¥) , _i(xa+vp)
=-iny Jb SR A o

The function % in (26a) is given by

k(XDy+YDg)
Y= (26b)
o |[VD||
where o &~ 1 is a positive real number. The error function erf(¢)) becomes
erf(y) ~ sign(XDa+Y Dg) as X?4Y?— 00 (26c)
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The term sign(D’) in (26a), which stems from the component G; in (24a), ensures that the

radiation condition is satisfied.

In the nearfield, the super Green function G can be expressed as the sum of the wave component

GY given by (26) and a local component G :

G=g"4gh (27)
Expressions (24a) and (25b) show that the local component G¥= G — GV is given by

Gh=G, - gy

Alternative representations of the local component G% in the fundamental decomposition (27) into
wave and local components are given in Noblesse and Yang (1996), Noblesse and Chen (1997),
and Noblesse et al. (1999). The latter study considers special cases, corresponding to simple
open and closed dispersion curves, and the general case of arbitrary dispersion curves. A simpler

representation that is valid for arbitrary dispersion curves is (see Appendix 3)
et (Xa+Y )

Gh= /dﬂ/da(A ZEA cE (282)
Summation in (28a) is performed over all the dispersion curves, which are identified by the subscript
J,and Ej is defined as

VD —o?D? DDj | DD}

E; = ex +iX(a—0j— =5 )+iY (B - B; — —=
1= vol,; “Plaeenp e Rp) T Y-~ pp )]

(28b)
The subscript or superscript j in (28) indicates evaluation at the j** dispersion curve; e.g. A;
stands for the value of the amplitude function A at the j** dispersion curve.

The local component GL defined by (28) can be further decomposed as in Noblesse and Chen
(1997) : -

Gl=gl+gf (29a)
Here, the component G~ is defined as
oo poo 1. .
Gb= [ [do =22 E 4 e-itxa+vp) (29b)
—00J-c0 D
. —02D?
with E = exp( 4_16—2—”‘77”2 ) (290)

The component G5 in (29a) is then given by

Gh = /dB/ Ed- ZEA e i (Xat+Yh) (29d)
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where the functions E; and E are given by (28b) and (29c). The component GL defined by (29b)
accounts for the contribution of the entire Fourier plane except the regions near the dispersion
curves. The contribution of these dispersion strips is given by the component g{‘) defined by (29d) .
The integrand of the double Fourier integral (29b) vanishes at a dispersion curve D=0, and this
Fourier integral can be evaluated simply and very efficiently if the amplitude function A is not
rapidly oscillatory, as is assumed here. The integrand of (29d) is finite at a dispersion curve, and

the component gg can also be evaluated without difficulty.

In fact, Noblesse and Chen (1997) shows that this component can be approximated by the single

Fourier integrals
2\/‘ v A ,
gk~ VT /d —CA) eilXatYB) 30a)
b~ L ok T ¢ ) ‘
along the dispersion curves D=0. Here, 9 is given by (26b) and
C = (DaaD2 + 2DopDoDg + DggD3)/|VD|? (30b)

Furthermore, 9A/0v is the derivative of the amplitude function A(e, ) in the direction of the unit
vector 7 = VD/||VD|| normal to a dispersion curve in the Fourier plane (a,f). The derivative

0A/0v can be determined using analytical or numerical differentiation, i.e.

OA _ DoAa+DpAs _ Alat,B)—Ala, )

W= vD| 2% (30c)
Here, A(o™, B%) are the values of the function A at points
(e*,8%) = (a,8) £ 6(Da, Dg)/|IVD| (30d)

defined via displacements + ¢ 7 from a point (a, 3) of a dispersion curve.
In summary, (27) and (29a) show that the super Green function G defined by the singular double
Fourier integral (23) can be expressed as

G=6V+¢t=¢"+ g5+ gt (31)

G" and G are given by the single Fourier integrals (26) and (30) , and GL is defined by the regular
double Fourier integral (29b) and (29¢) . The single Fourier integrals (26a) and (30a) can evidently
be combined, as in Noblesse and Chen (1997) . The wave component G and the local components

Gk and GI in the representation (31) can be evaluated in a straightforward and highly efficient
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manner if the amplitude function A in (23) is not rapidly oscillatory.

Fourier-Kochin representation of nearfield waves

The decomposition (27) shows that the double Fourier integrals (20a) and (20b), which are of

the form (23), can be expressed as sums of wave and local components :

¢t — ¢P W+ gk (32a)
= a
a4+ @}t —ar a% +al
¢+ o + o — 9P ) Vet (32b)
ai+af +af+af —ar " +al

The wave components in the decompositions (32) are defined by (26a) in terms of single Fourier
integrals along the dispersion curves defined by the dispersion relation D=0. It follows that the

second component on the right side of (20c) does not contribute to the waves contained in (20b).

Specifically, the wave component ¢", % in (32) is given by

( 3\ ( )

oW 1
uW ds |—ia|P=l
47 > = —1 / — b sign(D') + erf(y,,) | S £* 33a
’UW Dzz:o D=0 ”VD” —iIB 1;[ g( ) ( P)] P *p ( )
\wWJ \ k /

The identity f2 = k at a dispersion curve D = 0, which follows from (5a), was used in (20a).
The functions D and D’ in (33a) are given by (4b). Summation is performed over all the patches
that represent the surface X UT U XF, as previously explained. The function S;,’V stands for the

contribution of patch p to the wave-spectrum function S¥ defined by (21) and (22), with the

substitutions
(E,P,EF)—*(EP,FP,EZF;) (33b)
(x,ywz)_" (w—mp,y—-yp,z—zp)
performed in (22) . The function £; is given by
& = e(C+z)k—i[(§—zp)a+(n—1yp)B] (33¢)
Finally, ¢, is defined by (26b) as

o |VD]|
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In the farfield, we have

erf(yp) = sign[ (€ — 2p) Do+ (1 —yp) Dg]

and division of the surface ¥ UT U ZF into patches may not be necessary, as shown in Yang et
al. (2000a). In summary, farfield and nearfield waves are defined by (33) in terms of the wave-

spectrum function SV given by (21) and (22).

Time-harmonic ship waves

The dispersion curves in the regions (7) yield distinct contributions to the wave component ¢",

@ defined by (33a). If 7 < 1/4, ¢ and @" can be expressed as

OV | _ ) ok +o% +ol (340)
aW o +a¥ +al

The components @ %V , U g‘{, , U f{’, respectively correspond to the dispersion curves in the inner region

o; <a<ca] and the outer regions a <o and o} <a. The component W represents a system of
ring-like waves, called ring waves. The components @ Z‘(, and @} represent two systems of V-like
waves contained within wedges and called outer-V waves and inner-V waves, respectively. Curves
of constant phase (e.g. crest lines) corresponding to the ring waves (thick solid lines), the outer-V
waves (dashed lines), and the inner-V waves (thin solid lines) are depicted on the left side of Fig.
3 for 7=0.24. In the limit 7=0, the components @ }’ev and i g‘(, + 4 f{’, respectively correspond to

time-harmonic ring waves (limit F'=0) and steady ship waves (limit f=0).

If 7 >1/4, " and @% can be expressed as

W \%% W
-+- 4
¢ _ Prr + iy (34b)
aW W+l

where @ KYF and 4 K’, are associated with the dispersion curves in the regions a < a;*' and of <o,
respectively. The component @ y{/, represents a system of inner-V waves qualitatively similar to the
inner-V waves in (34a). The component % % represents fan-like waves and incomplete ring waves.
These waves are also contained within a wedge, and are called ring-fan waves. The system of
ring-fan waves can be further divided into two systems of waves : a system of inner-fan waves and
a system of partial-ring waves and outer-fan waves, which correspond to the portions a < —f/F

and —f/F<a< af of the dispersion curve a < a;" . Constant-phase curves corresponding to the
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partial-ring waves and the outer-fan waves (thick solid lines), the inner-fan waves (dashed lines),

and the inner-V waves (thin solid lines) are depicted on the right side of Fig. 3 for 7=0.26.

Expressions for the four basic time-harmonic ship-wave components — i.e. the inner-V waves in
(34a) and (34b), the ring-fan waves in (34b), and the outer-V waves and the ring waves in (34a) —
can be obtained from (33) and are now given. The inequalities (8) yield sign(D’)= sign(f—Fa)=1
for all the dispersion curves located in the regions defined by (7), except the dispersion curve in
the region o} <o for which sign(D’)= —1. The ship-motion dispersion function, defined by (4b)
as D = (Fa —f)? — k, yields Dg = —3/k and D, = —a/k with

a=oa+2k(r—-F)

Expression (33d) then yields ¢, = —yp, with

(f )@+ (n—yp)B (35)
o\/a + 32

Pp =

The dispersion curves in the three regions o} <o, a < aj , & < o can be defined by the

k= /k}+1t2

a=f/F-eVk/F (36a)
B = Vk?—a?sign(t)

parametric representation

where —0o <t < oo and

af -1 inner-V
ko =14 of =<1 for { ring-fan  waves (36b)
—ay 1 outer-V
with o, o , a7 given by (6). @ in (35) is then given by

a=f/F+e@2F% -1)Vk/F (36¢)

Finally, (33a) and the relation ds/||VD|| = eda/Dg = —e k da/ B yield

( 3 ()

oY i
uW © dtt | a
gl £ W ox d
o 2F/ooﬂf ’Z[er r) =18 & (36d)
w
\w’Y J \Zk)



The subscript v in ¢Y/V and 11‘7W stands for 7V for inner-V waves, RF for ring-fan waves, or oV for

outer V-waves. (36a) yields 8 ~ t/v/C as t—0 with
1+1/V1+4r inner-V
C=q1-1/y/1+4r | for { ring-fan ; waves
1+1/V/1—4r outer-V

Thus, the integrand of (36d) is continuous at t=0.

The dispersion curve in the region a; <a<a; can be defined by the parametric representation

k= f2/(V/1/4+ T cost +1/2)?

(37a)
a =k cost B =k sint

with —7 <t <m. In the limit 7 — 0, the inner dispersion curve becomes a circle of radius k = f2

centered at the origin of the Fourier plane. @ in (35) is given by

& =k[27 + (1- 2F?k) cost] (37b)

(33a) and the relation ds/||VD|| = —k dt/ Dy, yield

r¢}/2V‘ 4 Z\
w p=N
Up i dt k J o W
dr | =/ __ur f(p,) —118W € 37
m v}{r v oAl >;[er(sop) 18y & (37c)
v | ik

The integrand of (37c) is continuous for —7 <t < since ring waves exist only for 7<1 /4. In the

limit F'=0, expressions (37) for the ring waves become

4 ) 4 N\

54 i
ul ™ a | =N
ard A= 2w d O 0 ferilg,) 118V (38)
vg -n B | p=t
\ w}%/ 7 \ ?: k /

with (k,a,8) = f2(1,cost,sint) and , = [(§ —2p) cost + (7 — yp) sint] f2/o. (38) defines

time-harmonic waves associated with diffraction-radiation without forward speed.

Both the inner-V waves and the outer-V waves in (34a) contain real and imaginary parts.

However, the waves given by the sum

w W, W
ov | _ ) bovt v
—ov‘/ —ow/ _.u/
uy Ugy + Uy
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are real in the special case f=0, i.e. for steady ship waves. Specifically, (36) and the property that
steady-flow spectrum functions satisfy the relation SI‘,'V (—a,-B) = SI‘,’V (a,B), with Z = complex

conjugate of Z, show that steady ship waves can be expressed as

r(ﬂ,/vw ()
ul 00 a | =N
ard "V 4 = §Re/ af a $ [erf(ep) +1] SZVSI’; (39a)
oW —o0 k—v =
14 P
\w{//vl \ik}

Re stands for the real part, the relation ds/||VD| = dB/Dq = —k d(3/@ was used, and

k=v+4/vi+ 32 a=Vk/F (39b)

with v =1/(2F2). & in (35) is given by @ = (1- 2F2%k)a.

Rankine-Fourier decomposition : physical-space analysis

Consider the free-surface boundary condition (9). Define the coordinates (X, Y, Z) as
(5—33,77-21,C+z) =A(XaKZ)

where A stands for a length scale. With respect to the A-scaled coordinates (X,Y,Z), the free-

surface condition (9) becomes
Gz — fAAG+i2rGx + (FYA)Gxx =0 (40)
In the particular case F=0, (40) becomes Gz — f?A G = 0. This condition yields

Gz~0| . |[A<1/f2] r < 1/f?
if i.e. for
G=~0 A>1/f? > 1/f?
Thus, for time-harmonic flow without forward speed, the free surface acts like an infinitely rigid
wall in the nearfield region r’ < 1/f% and like an infinitely soft wall in the farfield region ' >> 1/f2.

The alternative representations (12) therefore are complementary and appropriate in the nearfield
and the farfield :
-1/r =1/ +H ‘ r < 1/f?
or
~1/r+1/r"+ H r'>1/f?

These nearfield and farfield approximations indicate that an ”optimal” Rankine-Fourier decompo-

4 G =

sition of the Green function G related to the free-surface boundary condition (3c) is
AnG=-1/r =17 +2/7" + F~ (41a)

25



]

where 7’ and r” are defined by (1b) with C?=1/f2, and F~ is a Fourier component.
In the particular case f=0, (40) becomes Gxx + (A /F?)Gz = 0. This condition yields

Gxx~0|  |A<F?| r < F?
if i.e. for
Gz =0 A> F? r' > F?

Thus, for steady flow, the free surface acts like an infinitely soft wall in the nearfield region r’ < F?

and like an infinitely rigid wall in the farfield region 7’ > F2. The alternative representations (12)

therefore are appropriate in the nearfield and the farfield :

-1/r+1/r+H r &« F?
A7 G = / / for
~1/r=1/r"+H r' > F?

These nearfield and farfield approximations indicate that an ”optimal” Rankine-Fourier decompo-

sition of the Green function G related to the free-surface condition (3b) is
4rG=-1/r+1/7 =2/7" + F* (41b)
where 7’ and 7 are defined by (1b) with C?=F?, and F* is a Fourier component.
If fF > 0, the free-surface condition (40) yields

Gxx ~0 A—-0 -0
if i.e. for
G=0 A—-ox ' — 00

Thus, the free surface acts like an infinitely soft wall in both the nearfield »’ — 0 and the farfield

rl — 00, and the Rankine-Fourier decomposition of the Green function
arG=-1/r+1/r+H (41c)
is ”optimal” for the ship-motion free-surface condition (3a) with fF > 0.

Expressions (41) yield

—1/r'+2/7" F=0
drG = =1/r+q 1/r=2/r" 2+ F if ¢ f=0 (42a)
1/r' fF>0

Here, 7, r', v are defined by (1b) with C? given by

1/f2| . |F=0
if
F? f=0

Cc?= (42b)
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The Fourier-component F in (42a) is given in the next section.

Rankine-Fourier decomposition : Fourier-space analysis

The free-surface component GF in expression (10a) for the Green function G corresponding to

the free-surface boundary condition (9) is given by (11). Alternative forms of (11) are

1 -1 1 2 -1 2
F - -
At G =F+H+=7+H =;—77+‘7:+=7+;7+}— (43)

The functions GF, H*, F* are given by the right side of (13b) with k, £, D, given by (2b) and
(4), and

vam [(f-Fa)/k+1]/2 ’
AT 1
A=q A" =1 (f—Fa)?/k ; (44a)
At 1+ [(f—Fa)?/k—1]e=C"k
(A7) | (F-Fa)*/k—[(f-Fa)*/ k—1]e- ¥

as follows from (11), (2c) and (2d). The functions H* and H~ in (43) are identical to the

previously-defined functions H and M (the notation H* is used here for convenience) .

The theory of Fourier transforms, Lighthill (1970), shows that the farfield behaviors of the
local components contained in the functions GF, H*, F* are determined by the behaviors of the
functions A¥/D, A*/D, A*/D at the origin k = 0 of the Fourier plane. Conversely, the behaviors
of these functions in the limit £ — co determine the nearfield behaviors of the functions GF , H*,
F* in the physical space.

In the particular case F = 0, we have C?=1/f? and (44a) becomes

4 h 4 \

AF (£2/k+1)/2

At 1

A P = 2k b (44b)
A L+ (f2/k=1)e*/F

(A7) k= (2 k—1)e /1

The functions AF, A* and A+ are finite in the limit £ — oo, whereas the functions A~ and A~ are
O(f*/ k), i.e. vanish, in this limit. It follows that the functions H~ and F~ are less singular at the
origin 7’ = 0 than the functions G, H* and F* in (43). In the limit k — 0, the function A~ is

O(f?/k), i.e. singular, whereas A~ is O(1) , i.e. finite. It follows that the local component contained
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in the function F~ decays faster in the farfield r’ — co than the local component associated with

the function H~. The decomposition (41a) is therefore preferable.

In the particular case f = 0, we have C?=F? and (44a) becomes

(aF] | (F2a2/k +1)/2 ’
At 1

J A= 3 = F2a?/k (44c)
At 14 (F20%/k~1)eF*k

(A \F2a2/k—(F2a2/k—1)e‘F2k‘

In the limit k£ — oo, the functions A¥, A~ and A~ are O(F2a?/k), i.e. unbounded, whereas the
functions A* and A% are O(1). The functions H* and F* therefore are less singular at the origin
7' = 0 than the functions G¥, H~ and F~ in (43). In the limit ¥ — 0, the function At is finite
but A* is O(F2k) and thus vanishes. The local component contained in the function F* therefore
decays faster in the farfield »’ — oo than the local component corresponding to the function H™,

and the decomposition (41b) is preferable.

In the general case fF > 0, the functions A¥, A~ and A~ in (44a) are O(F2%a?/k), i.e.
unbounded, and the functions A* and A* are O(1) in the limit ¥ — oo. In the limit k — 0, the
function A" is finite but the function A* is O(f?/k), i.e. unbounded. Thus, the decomposition

(41c) is preferable in this case.

The component F in expressions (42a) for the Green functions related to the free-surface con-

ditions (3) is then defined by the Fourier superposition of elementary waves (13b), i.e.

o0 o0
F= lim 1/ dﬂ/ do 2 ek(¢+2) g (45)
E— —0 J-oo D:

+0 7

Here, k and £ are given by (2b), the dispersion function D, is given by (4), and the amplitude
function A is defined by (44) as

Pl = (£ k=1)e /" F=0
A= 14 (F2?/k—1)eF"k } if { f=0 ()
1 FFE>0

Expressions (46) yield

2 9 0] .
A~ as k/f*— if F=0
f2lk 00
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F2k (14 a2/ k? 0
A~ ( /F) as F2k — if f=0
1 00

In the general case fF' >0 and the special cases f=0 and F=0, (46) yield

£= 0O(1) us ko 0
D loa/k?) 0

and A=1if D=0. Thus, the amplitude functions A defined by (46) are equal to 1 at a dispersion
curve D=0, and the free-surface components defined by (46) and (13) yield identical farfield waves

as one expects.

Expressions (42), (45) and (46) define the Green functions associated with the free-surface
boundary conditions (3) in terms of elementary Rankine singularities and Fourier superpositions
of elementary waves. The Rankine-singularity components in (42) account for the dominant terms
in both the nearfield and farfield asymptotié approximations to the nonoscillatory local compo-
nents included in the Green functions corresponding to (3). The foregoing method of extracting
the leading nearfield and farfield local component from the Fourier component can in principle be
pursued to obtain additional terms in the nearfield and farfield asymptotic approximations to the

local components in free-surface Green functions.

- Rankine and Fourier-Kochin representation of nearfield flows

The Rankine-Fourier decomposition process that has been expounded above for the simple case
of free-surface Green functions is useful more widely, notably within the Fourier-Kochin approach.
In fact, the potential and velocity representations, the Fourier-Kochin approach, and the Fourier-
Rankine decomposition process yield remarkably simple analytical representations of nearfield flows

for the three basic types of free-surface flows corresponding to (3), as is now explained.

Transformations of the wave-spectrum functions S%, guided by the Rankine-Fourier decom-
position process, can be performed for the purpose of obtaining practical representations of the
local component ¢, @ in (32). These transformations express the wave-spectrum functions S%
given by (21) and (22) in terms of local-spectrum functions ST and components that involve the

dispersion function D and are dominant in both the limit £ — oo and the limit £k — 0:
$W=psP+ gL (47)
The dominant component D SP can be expressed in terms of distributions of Rankine singularities.
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The potential ¢ and velocity @ defined by the boundary-integral representations (14) and the

Fourier-Kochin representations (32) of free-surface effects can then be expressed as

¢ " Rt p” of — uFof + o7 b+or
_ " ) B © oF r{. ¢p (484)
a aW af+ P af - yFaf +af af +al
with
1 F=0 ' F=0
pt = if ¢ pF=313if{ f=0 (48b)
-1 F>0
0 fE>0

The component ¢%, % on the right side of (48a) corresponds to the nearfield waves considered
previously, and the other components represent a nonoscillatory local flow disturbance. Thus, the
wave component ¢*, %W is given by single Fourier integrals along the dispersion curves D=0. The
Fourier integrals (33a) involve the wave-spectrum functions S% defined by (21) and (22) in terms

of distributions of elementary waves over the surface T UT' U EF.

The four components in the second group on the right side of (48a) are defined in terms of
distributions of Rankine singularities. Specifically, the Rankine component ¢, @F is given by
(15a) in terms of distributions of elementary Rankine singularities R = —1/r over the boundary
surface ©. The Rankine component ¢, @ is also given by distributions of elementary Rankine
singularities over the boundary surface ¥ ; specifically, the component ¢f, @ is given by (15b)
with R* defined as
—1/r'+2/r" £ fF=0
=1/ fF>0

R = (49)

Here, " and r” are given by (1b) with C? defined by (42b). The function R* is evidently related to
the Rankine-Fourier decompositions (42) of the Green functions corresponding to the free-surface
boundary conditions (3) . The Rankine component ¢, @# in (48a) stems from the forcing term p
in (3) and is given by
oF (/)"
4 < uF >=2/ dA py /)
vff E (1/r)
| wf ) L (1/7)

The Rankine component qﬁ?, U {3 in (48a) is given by distributions of Rankine singularities over

"
&l
12

n
17

<

¢

the boundary curve I'.
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Finally, the two components in the third group on the right side of (48a) are Fourier components
that are defined by single Fourier integrals along the dispersion curves and double Fourier integrals,
as given by (30) and (29b)-(29c) . These Fourier integrals are defined in terms of the local-spectrum
function S in (47). The integrands of the double Fourier integrals defining the component ¢~ , 7L

are finite at k=0 and continuous everywhere in the Fourier plane, and decay rapidly as k — oco.

The Rankine component gbp, ur and the Fourier components ¢D, “D and ¢L, @l in the
nearfield flow representation (48), called Rankine and Fourier-Kochin representation, will be given
elsewhere. The Rankine and Fourier-Kochin representation of nearfield flows does not involve the
special functions that appear in the integral-representations of the Green functions associated with
the free-surface boundary conditions for steady and time-harmonic ship waves given in Noblesse
(1981) and Chen (1999). In fact, the Rankine and Fourier-Kochin representation (48a) is entirely

defined in terms of the elementary solutions (1), and thus is remarkably simple.

Iterative solution procedures and related approximations

Numerical calculations of free-surface potential flows due to ships and offshore structures have
traditionally relied on the computation of influence coefficients associated with a discretization of
an integral equation obtained from the classical potential representation. An alternative approach
based on an iterative solution procedure can be advantageous, and can provide useful analytical
approximations. An example is the slender-ship approximation given in Noblesse (1983) and No-
blesse and Triantafyllou (1983) . This approximation defines the steady velocity field 21'({) due to a
ship explicitly in terms of the speed and shape of the ship :

/ dA(E) n* (%) VeG(E, ) + F / dL(Z) [n®(E) |2 ¥(2) VeC(E, 7) (50)

The slender-ship approximation (50) is a generalization of the Michell thin-ship approximation.
Specifically, the Michell approximation differs from (50) in that it defines @ in terms of a distribution
of sources, with strength 2n”, over the ship centerplane y =0 instead of a distribution of sources
of strength n® over the port and starboard sides of the actual ship surface ¥ . In addition, there is

no distribution of sources around the waterline I' in Michell’s approximation.

The wave component 7" in the decomposition @ = @" + @ is given by the Fourier-Kochin

representation (33), which can be expressed as in Yang et al. (2000b) . The wave-spectrum function
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SW corresponding to the slender-ship approximation (50) is defined by
SW=/dA n®ek? g, + Fz/d/: (n®)2 ¥ £
b r

with £ = e*(®*+8¥) The local component @~ can be effectively evaluated from (50) with the
Green function G taken as the simple analytical approximation to the local component G defined
by (42) as

47GE ~ ~1/r+1/7" =2/7"

Here, 7, ', " are defined by (1b) with C%?= F2.

At the ship hull surface ¥ | the velocity field @ given by the slender-ship approximation (50) can

be modified using the transformation

—

Go=4— (@ 7 -n®)7 (51)

This transformation yields #,- 7 = n® and thus ensures that the velocity distribution @, at the
hull surface satisfies the hull boundary condition. The hull-condition transformation (51) can be
applied to any velocity distribution @ computed at a ship hull surface. In particular, (51) shows
that the velocity distribution i, associated with the trivial velocity distribution @ = 0 is given by
iy, = n* 7. This velocity distribution is normal to the ship surface £ and evidently satisfies the
hull boundary condition #,- 7 = n*. The velocity distribution %, = n* 7 in fact corresponds to the
slender-ship approximation (50). The practical usefulness, notably for hull-form optimization, of
this remarkably simple approximation is demonstrated in Letcher et al. (1987) , Wyatt and Chang
(1994), and Yang et al. (2000b) .

Conclusion

Four fundamental analytical representations have been given for time-harmonic ship waves,

steady ship waves, and wave diffraction-radiation without forward speed :

1. The potential and velocity representations (14)-(18) define a flow within a free-surface
potential-flow region in terms of the flow at a boundary surface : the potential representation de-
fines the velocity potential ¢ in terms of boundary values of ¢ and its normal derivative 0¢/0n , and
the velocity representation obtained in Noblesse (2000) defines the velocity # in terms of boundary
values of @. These boundary-integral representations, given here for deep water, can be extended

to uniform finite water depth. The velocity representation defines ¥ within a flow domain in terms
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of source and vortex distributions with strength equal to the normal and tangential components of
@ at the boundary surface. Thus, the velocity representation does not involve the potential ¢, and
can be used to couple a nearfield flow calculation method based on the Euler or RANS equations
(for which a velocity potential cannot be defined) and a farfield potential flow representation. The
velocity representation defines @ in terms of first derivatives of the Green function G (whereas i
can only be obtained from the potential representation via analytical differentiation of ¢, which

involves second-order derivatives of G, or via numerical differentiation of o).

2. A practical representation of the super Green function G defined by (23) has been given. The
dispersion functions D, D and the amplitude function A in (23) are generic. Thus, the super Green
function (23) is representative of a broad class of dispersive waves (including water waves in finite
uniform water depth and internal waves in a density-stratified fluid) generated by an arbitrary
distribution of singularities (e.g. source, dipole, vortex sheets) . Expression (31) provides a formal
decomposition of the singular double Fourier integral (23) in terms of a wave component and a local
component. The wave component G% in this decomposition is defined by (26) in terms of single
Fourier integrals along the dispersion curves associated with the dispersion relation D =0. The
local component G is given by (29) and (30) . The single Fourier integrals (26a) and (30a) and the
double Fourier integral (29b) can be evaluated in a straightforward and very efficient manner if the
amplitude function A is not rapidly oscillatory (as is the case in practice if the boundary surface is

divided into patches) . The single Fourier integrals (26a) and (30a) can obviously be combined.

3. The Fourier-Kochin approach and the Fourier representation of super Green functions have
been used to express the potential ¢ and velocity @ defined by the boundary-integral representations
(14)-(18) as the sum of a wave component ¢", @% and a local component that represents a
nonoscillatory local flow disturbance. The wave component is given by the single Fourier integrals
(33) , where summation is performed over all the patches that represent the surface SUT USF , and
the wave-spectrum function SZ‘,’V is defined by (21) and (22) in terms of distributions of elementary
waves over patch p. Thus, the farfield and nearfield waves generated by a velocity distribution at
a boundary surface are defined in terms of remarkably simple Fourier superpositions of elementary
waves over the boundary surface. Specifically, time-harmonic ship waves are defined by (34) with
(36) and (37); time-harmonic waves in the special case F'=0 (no forward speed) and steady ship
waves (zero-frequency limit f = 0) are respectively given by (38) and (39). The Fourier-Kochin

wave representation has been obtained from the potential representation in Noblesse and Yang
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(1995) and from the velocity representation in Noblesse (2000).

4. The Fourier-Kochin approach, the Fourier representation of super Green functions, and the
Rankine-Fourier decomposition process, expounded here for free-surface Green functions, show
that the potential ¢ and velocity @ defined by the boundary-integral representations (14)-(18)
can be expressed as in (48). The nearfield flow representation (48) extends the Fourier-Kochin
representation of waves given by (33) and (21)-(22). Indeed, the wave component ¢", ¢W in
(48a) corresponds to the nearfield waves given by the Fourier-Kochin wave representation. The
other components in (48a) represent local flow disturbances. These local-flow components consist
of Rankine components and Fourier components that are respectively given by distributions of
elementary Rankine singularities and elementary waves over the boundary surface £, the boundary
curve I', and (eventually) the mean free-surface plane ¥ (if p#0). The Fourier components are
given by single Fourier integrals along the dispersion curves and double Fourier integrals, as in
(30) and (29b)-(29c) . The integrands of the double Fourier integrals defining ¢% , &L are finite at
k=0 and continuous everywhere in the Fourier plane, and decay rapidly as k¥ — co. The Rankine
and Fourier-Kochin representation (48) of nearfield flows only involves elementary functions and is

remarkably simple.

The foregoing four analytical representations, which are the major results underlying the Fourier-
Kochin theory, provide a new mathematical basis for computing free-surface flows about nonlifting
and lifting bodies using free-surface Green functions. Practical applications of the Fourier-Kochin
representation of waves are given (for the case of steady ship waves) in Guillerm and Alessandrini
(1999) and Yang et al. (2000a,b). Specifically, the Fourier-Kochin representation of steady ship
Waves is coupled with nearfield calculations based on the RANS and the Euler equations in Guillerm
and Alessandrini (1999) and Yang et al. (2000a) , respectively, and is applied to the design of a wave
cancellation multihull ship in Yang et al. (2000b). The representation of super Green functions
has also been used in Noblesse and Chen (1995) to obtain a simple representation of the Green
function for wave diffraction-radiation at low forward speed in terms of the Green function for wave

diffraction-radiation without forward speed. The Fourier-Kochin theory is currently being applied

to time-harmonic ship waves.

Yang et al. (2000a,b) show that calculations based on the Fourier-Kochin approach are remark-
ably efficient. This efficiency stems from the fact that evaluation of the wave component ¢%, 7W

and the local components (;S%), 4 1]5 and ¢F, @F in the Rankine and Fourier-Kochin nearfield flow
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representation (48a) involves two O(NN) operations : (i) evaluation of the wave and local spectrum
functions S% and S*, which is a O(N paneIS) operation where NPanels gtands for the number of
panels used to approximate the boundary surface, and (ii) evaluation of the Fourier integrals (26a),
(30a) and (29b) , a O(NPOINtS) operation where NPOIIES js the number of points at which the flow
is computed. Thus, evaluation of th.e free-surface components in the Rankine and Fourier-Kochin
representation involves O(NPanels) 1 o( NPOInts) oherations, instead of O(NPanelsy . o(ypoints)

operations for the classical Green function method. This property directly follows from the identity

ek (C+2)=ila(é=a)+B(n-y)] = ph¢—i(at+Bn) ghz+i(az+hy)

which is used in the Fourier-Kochin representation of free-surface effects, but is ignored in the
classical Green function approach. Evaluation of the Rankine components ¢, @® and ¢F, @F
in (26a) is a O(NPanels) . o(nN Points) oneration, which indeed consumes the largest share of
computing time for the relatively large values of NPanels ang NPOIOtS that are required at low

speed and/or high wave frequencies (N is approximately proportional to 1/F? and f?).

Although the free-surface boundary conditions (3) correspond to Kelvin linearization about the
uniform stream opposing the ship speed, the nonhomogeneous forcing term p in (3) can account for
linearization about a more complex base flow, e.g. flow about a ship in the presence of a rigid free
surface. Thus, the potential gnd velocity representations, the Fourier-Kochin wave representation,
and the Rankine and Fourier-Kochin nearfield flow representation, can be used within the context

of various free-surface linearizations.
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Appendix 1

An elementary verification of (2a) is given here. Expression (2a) yields
1 1 foo oo e~k ((—2) > 2
—=—/ dﬂ/ do & £ il
r 2T Joo Jooo k ek(¢{-2) (<z
It follows that Vg (1/r) = 0if { # 2. The flux through the two planes ¢ = z &+ 0 is given by

[0-1/r)/0¢): %8 = — [ “daceiat€2) ["4g i) = grs(e - 2)8(n ~y)

Thus, (2a) represents the velocity potential created at é’ by a unit source located at 7.

Appendix 2

Expressions (11a) and (2b) show that that the free-surface component G in (10a) satisfies the
Laplace equation. Expressions (10), (2a) with >z, and (11a) yield

D ek g
_ F_k¢ _ Ye —k¢
47 G = lim —-—2 dﬂ/ da(2A"e - € )————D

e—+0 e

At the free-surface plane ( =0 we then have

Gg—f2G+z'2TGg+F2G55—s(z‘fG—i—FGE) =

1 A i .
lim = / as [ da poete  with

A=2k A"+ D. — (f—Fa)(f—Fa +ie)(24F - D./k)

Expressions (4) and (11b) yield A ~ i¢ DD'/k as e —0. Thus, A=0(e) if D#0 and A=0(e?) if
D=0ase—0.

Appendix 3

The representation (28) holds if

gzw../dﬁ/daZE 4% =

/dnEA
& p=0 DO

Here, £ = e~#(X2+YB8) and ds and dn are the differential elements of length along a dispersion
curve D=0 and its normal VD . The relation dn = dD/||VD|| and expression (28b) show that the

foregoing expression is identical to (12) in Noblesse et al. (1999).
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